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INFLUENCE OF RING STIFFENERS ON INSTABILITY OF 

ORTHOTROPIC CYLINDERS IN AXIAL COMPRESSION* 

By David L. Block 
Langley Research Center 

Calculations a re  presented from an ana ly t ica l  investigation on the  influence 
of ring s t i f f ene r s  on the  i n s t a b i l i t y  modes of orthotropic cylinders subject t o  
compressive or bending loads. The analysis i s  performed by employing small- 
deflection theory and by modifying the  equilibrium equation t o  include the  
e f f ec t s  of d i scre te  ring s t i f f ene r s  characterized by a bending s t i f fnes s  t h a t  
res t ra ins  radial deformation of the she l l .  These calculations indicate t h a t  the  
ring bending s t i f fnes s  necessary t o  cause panel i n s t a b i l i t y  can be adequately 
determined by use of an analysis which does not include the discreteness o f  the  
rings. Comparison of the  r e su l t s  of t he  calculations with an empirical ring- 
design c r i te r ion  i n  common use indicates t h a t  t he  empirical formula can be e i the r  
very conservative o r  very nonconservative depending on the  cylinder geometry. 

INTRODUCTION 

A problem encountered i n  the  design of ax ia l ly  st iffened, ax ia l ly  com- 
pressed cylinders i s  the  determination of the  s ize  of the  circumferential s t i f f -  
ening elements o r  r ings required t o  prevent general i n s t a b i l i t y  f a i l u r e  o f  the  
cylinders. Common pract ice  i s  t o  determine the  s i ze  of ,rings by the empirical 
formula of reference 1, which gives the  required ring bending s t i f fnes s  t o  force 
cylinder f a i l u r e  t o  occur between rings. 
on t e s t s  of small cylinders with re la t ive ly  few s t i f fen ing  elements. Such 
cylinders a re  not very representative of the  cylinders used i n  contemporary a i r -  
c r a f t  and launch vehicles. The use of t h i s  formula i n  contemporary design 
therefore causes some concern. 

The formula of reference 1 is  based 

An ana ly t ica l  study of the  ring s t i f fnes s  required t o  force cylinder f a i l -  
ure t o  occur between rings i s  made i n  t he  present study. For t h i s  purpose an 
analysis incorporating a Donne11 type theory s i m i l a r  to the  one employed i n  
references 2 and 3 w a s  used. The mathematical treatment of the  rings i s  approx- 
imate and the  ring s t i f fnesses  predicted by the  calculations made herein cannot 
be considered conclusive. However, t he  calculations do indicate  buckling char- 
a c t e r i s t i c s  which a id  i n  the design of to rs iona l ly  weak rings of ax ia l ly  

p a r t i a l  fulf i l lment  of t h e  requirements f o r  t h e  degree of Master of Science i n  
Engineering Mechanics, Virginia Polytechnic Ins t i t u t e ,  Blacksburg, Virginia, 
June 1964. 
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*The information presented herein i s  based in-part upon a t h e s i s  offered i n  



s t i f fened  cylinders and which give a ring design c r i t e r ion  t h a t  has a be t t e r  
theore t ica l  basis than the  one ( r e f .  1) now i n  general use. 

elements of a determinant 

coefficient of def lect ion function 

transverse shear s t i f fnesses  of cylinder w a l l  i n  longitudinal and 
circumferential directions,  respectively 

bending s t i f f n e s s  of cylinder w a l l  i n  longitudinal and circumferential 
directions,  respectively 

t w i s t i n g  s t i f fnes s  of cylinder w a l l  

L s t i f f e n e r  spacing, - n + l  

Young's modulus of e l a s t i c i t y  f o r  r ing s t i f f ene r s  

extensional s t i f fnes s  of cylinder w a l l  i n  longitudinal and circumfer- 
e n t i a l  directions,  respectively 

in-plane shear s t i f fnes s  of cylinder w a l l  

7B49, H =- 
DX 

Ir 

i, j,k,m,p integers  

moment of i n e r t i a  of ring s t i f f ene r s  

N ~ L ~  

fi2DX 
c r i t  ical-axial-  compressive-stress coefficient,  - kX 

L length of- cylinder 

D Y &  
clxDy ) : 2 + 1 - px% ay4 Dx a4 bDX + % + 1  

L D = l  - pxC5 -T+(Lk% ax - WJy ax ay 

Gxy a4 ( 1 - p x  ' E , -  

LE-l inverse of LE defined by LE-~(LEW) = LE(%-'W) = w 
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P4Dy P4 + [ D X ( Z X % ,  + - Dx “;i 2p2$* + q T G q  

Ey $.3 + kxP [ c a  ) Ex 

- px* 

p4z2 2 + 
ll4 p4 + - - 2py’ pq32 + - 

NX c r i t i c a l  resul tant  normal force i n  ax ia l  direct ion 

n number of rings 

R radius of cylinder t o  midplane 

S minor-determinant number whose value i s  one through number of rings, 
1, 2, 3, 4, . . . n 

W displacement i n  radial direct ion of middle surface of cylinder 

X longitudinal coordinate of cylinder 

Y circumferential coordinate of cylinder 

Z cylinder curvature parameter, ”$ 
R Dx 

P r a t i o  of cylinder length t o  circumferential buckle length, L/A 

7 r a t i o  of bending s t i f fnes s  of ring t o  bending s t i f fnes s  of cylinder 
w a l l  in circumferential direction, ErIr/Dyd 

r a t i o  of bending s t i f fnes s  of r ing t o  bending s t i f fnes s  of cylinder 
w a l l  i n  circumferential direct ion at  which buckling i n  the  panel 
and general i n s t a b i l i t y  modes coincide 

7 c r  

S(x - i d )  Dirac de l t a  defined such t h a t  f ( x )  6(x  - id )& = f ( i d ) ,  

where S(x - i d )  = 0 when x # i d  

8 i j  Kronecker del ta ,  S i j  = 0 when i # j and 6 i j  = 1 when i = j 

A circumferential buckle length  

PXJ * Poisson’s r a t io s  associated with bending of cylinder w a l l  

px l ,%’  Poissonls r a t i o s  associated with extension of cylinder w a l l  
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RESULTS AND DISCUSSION 

The calculations and results presented w e r e  made with the  use o f  the  sta- 
b i l i t y  c r i t e r ion  presented i n  appendix A. 
cylinders loaded i n  compression and i s  based on conventional small-deflection 
buckling theory ( ref .  4);  t he  rings are t rea ted  as d iscre te  members located a t  
t h e  neutral  ax is  of t h e  cylinder; they are characterized by a single s t i f fness ,  
a bending s t i f fnes s  t h a t  res t ra ins  r ad ia l  deformations of t he  she l l  ( r e f s .  2 
and 3 ) .  
t rop ic  s t i f fnesses  i n  order t o  study the  influence of t he  discreteness of rings 
on the  i n s t a b i l i t y  modes of s t i f fened cylinders. Although the  calculations were 
made only f o r  cylinders loaded i n  compression, they w i l l  a l so  apply with reason- 
able  accuracy t o  cylinders subject t o  bending loads. 

The c r i t e r ion  applies t o  orthotropic 

Calculations were made f o r  cylinders covering a wide range of ortho- 

A l l  r e su l t s  of t h e  calculations made exhibited similar character is t ics  and, 
therefore, only a typ ica l  calculation is  presented i n  tab les  I and I1 where 
theore t ica l  buckling coeff ic ients  f o r  a selected s t i f fened cylinder are  given 
i n  terms of t h e  natural  parameters of t he  problem. The data of tables  I and I1 
are a l so  given i n  f igures  1 and 2 i n  the  form of p lo ts  of the  buckling coeffi- 
cient against t he  r ing s t i f fnes s  parameter. Separate curves are given f o r  d i f -  
ferent  values of t h e  curvature parameter and f o r  d i f fe ren t  modes of buckling. 

The so l id  curves of figure 1 denote buckling of t he  cylinder i n  the  general 

It w i l l  be noted tha t  the curves denoting general i n s t ab i l i t y  form 
ins t ab i l i t y  mode and t h e  short  dashed l i n e s  denote buckling i n  the  panel insta-  
b i l i t y  mode. 
an envelope curve which i s  independent of t h e  discreteness of the  rings. This 
curve can be calculated by conventional orthotropic analysis ( re fs .  5 and 6), 
which d is t r ibu tes  the  bending s t i f fnes s  of t he  rings over the  panel length 
between rings and treats it as an additional property of the  cylinder w a l l .  
Note a l so  t h a t  t he  e f fec t  of ring discreteness does not become important u n t i l  
t he  buckling coeff ic ient  f o r  panel i n s t a b i l i t y  has been exceeded, except f o r  t he  
case of a cylinder with a s ingle  ring ( n  = 1) and even for t h i s  case t h e  e f fec t  
i s  negligible. Hence, cylinders can be adequately analyzed by theories which 
do not account f o r  t h e  discreteness of rings. Another interest ing feature  of 
f igure 1 i s  t h a t  t h e  general i n s t ab i l i t y  curve f o r  a given cylinder leve ls  off 
a t  a value of t he  buckling coefficient which i s  less than the  buckling coeffi- 
cient f o r  panel i n s t a b i l i t y  of t h e  cylinder with one additional ring. 
buckling mode en ta i l s  deflection of t h e  d iscre te  rings at low-values of t he  ring 
s t i f fnes s  r a t i o  but as t h e  ring s t i f fnes s  r a t i o  increases t h e  deflection of t he  
rings approaches zero and buckling en ta i l s  only deflection of t he  cylinder w a l l  
between rings. 

The 

Additional curves s i m i l a r  t o  those of f igure 1 are given i n  figure 2, 
except t ha t  t he  individual curves denoting buckling by general i n s t ab i l i t y  a re  
not included when they do not represent t he  governing mode of buckling. These 
curves represent t h e  governing mode of buckling only f o r  t he  cylinder with a 
single central  ring. (See curves f o r  n = 1. ) The general features  of t he  
curves of f igure 2 are t h e  same as those of f igure  1 of reference 2 which gives 
the  buckling coefficient of ring-stiffened isotropic  cylllnders i n  torsion. I n  
both investigations t h e  buckling coefficient increases with increasing ring 
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s t i f f n e s s  u n t i l  t he  panel i n s t a b i l i t y  mode i s  reached, arid the t r ans i t i on  t o  
t h e  panel i n s t a b i l i t y  mode occurs by a change i n  mode, so  t h a t  l i t t l e  o r  no 
in te rac t ion  between the  two modes of buckling i s  involved. This l a s t  feature 
i s  important because it indicates  t h a t  cylinders can be adequately designed with 
an analysis such as the  one of reference 6, which does not include the  discrete-  
ness of t he  rings. Both i n s t a b i l i t y  modes of concern here a re  adequately dis- 
cussed i n  reference 6, where f o r  the  panel i n s t a b i l i t y  calculation the  cylinder 
i s  considered t o  have a length equal t o  the  ring spacing and f o r  the general 
i n s t a b i l i t y  calculation the  properties of the  ring a r e  added to those of t he  
w a l l  i n  determining s t i f fnes s  constants f o r  the  s t a b i l i t y  equation. 

Other calculations similar t o  those presented i n  f igures  1 and 2 and cov- 
ering a wide range of cylinder w a l l  s t i f fnesses  were made i n  t h i s  investigation. 
The r e su l t s  of t he  calculations were similar t o  those presented f o r  a par t icu lar  
set of w a l l  geometries and substant ia te  t he  conclusions drawn therefrom. 

A comparison of the r e su l t s  of t he  present theory with Shanley's c r i te r ion  
f o r  ring s t i f fnes s  (ref. 1) i s  given i n  figure 3 f o r  t he  par t icu lar  set of w a l l  
s t i f fnesses  used i n  the  calculations f o r  f igures  1 and 2. Figure 3 w a s  con- 

s t ructed with t h e  parameter (u' EE 
held constant; t h i s  procedure r e su l t s  

i n  a constant value f o r  t he  reinforcement r a t i o  
ent analysis.  
conservative o r  very nonconservative compared with the  present analysis depending 
upon the  proportions of t h e  cylinder. 
shown i n  figure 3 have been made f o r  cylinders with other w a l l  s t i f fnesses .  
Although the  r e l a t ive  posi t ion of t he  two curves changes, t h e  trend indicated 
i n  f igure 3 w a s  found t o  be typical .  
nonconservative a t  t h e  la rger  values of 

7cr when computed by the pres- 
Figure 3 indicates  that Shanley's c r i t e r ion  may be e i the r  very 

Additional comparisons similar t o  the  one 

Shanley's c r i t e r ion  was found t o  be more 
d/R which correspond t o  small values 

~ . Such proportions result i n  a small number of circumferential waves R 
O f  m 
when the  cylinder buckles. 
nonconservative f o r  cylinders which buckle i n t o  modes with a small number of 
circumferential buckles. 

Hence it i s  concluded t h a t  Shanley's c r i t e r ion  i s  

CONCLUDING REMARKS 

R e s u l t s  of theore t ica l  calculations investigating the  influence of d i scre te  
ring s t i f fnes s  on t h e  i n s t a b i l i t y  of orthotropic cylinders i n  compression o r  
bending have been presented and discussed. A ring-stiffened cylinder can be 
strengthened by increasing the  r ing s t i f fnes s  up t o  a l i m i t  a t  which the  cyl- 
inder  fails  between the  rings. The l i m i t  o r  t r ans i t i on  from general t o  panel 
i n s t a b i l i t y  is  essent ia l ly  independent of t he  discreteness e f fec t  of t he  rings 
and allows the  cylinder t o  be adequately analyzed and designed by conventional 
orthotropic analysis which d i s t r ibu te s  the  properties of t h e  rings. A 
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comparison of the analysis with an empirical ring criterion of Shanley's shows 
that Shanley's criterion becomes nonconservative for cylinders which buckle 
into modes with a small number of circumferential buckles. 

Langley Research Center, 
National Aeronautics and Space Administration, 

Langley Station, Hampton, Va., August 17, 1964. 
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APPENDIX A 

THEORETICAL SOLUTION 

The equation of equilibrium governing the  buckling of a curved orthotropic 
p l a t e  with i n f i n i t e  transverse shear s t f f fnesses  ( D Q ~  = D&Y = m) and subject 

t o  in-plane axial s t resses  only i s  (ref. 4 )  

4 (a a w  ErIr - S(X - i d )  = 0 
G~ %-1 a 4 

R2 ax4 ax i =1 aY4 
L D W  + - 

The fourth term of equation ( A l )  is  added t o  represent t he  r ad ia l  restoring 
force due t o  the  bending s t i f fnes s  of equally spaced rings. 
and 3 . )  Endowing each r ing with a single bending s t i f fnes s  i s  equivalent t o  
considering the  ring t o  be without tors ional  s t i f fnes s  and attached t o  the  s h e l l  
by a f r i c t ion le s s  bond which maintains contact but allows the  s h e l l  t o  s l i d e  
f r ee ly  under the  r ing .  
Galerkin method i n  a manner similar t o  tha t  of references 7 and 8. 

(See refs .  2 

The equation of equilibrium may be solved by the  

The simple support boundary conditions considered herein a re  sa t i s f i ed  i f  
the  solution is  taken as t h e  i n f i n i t e  se r ies  deflection function, tha t  is, 

mfix w = s i n  a, s i n  - z L 

where the  coeff ic ients  s, are  t o  be determined. When,equation (A2)  is  sub- 
s t i t u t e d  i n t o  the  equilibrium equation, the  Galerkin method of solution yields  
t h e  equation 

n - 
Mp&p + T H  s i n  

i =1 
where 

p = l ,  2, 3, . . . 

+ - -  
n4p + 

P4Z2 

m 

kfii 
ak s i n  - = 0 

n + l  n + l  
k=l  
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d ring spacing 

n number of rings 

p = L/h 

Employing the  ident i ty  

n 

i =1 

where, i f  p - k i s  a multiple of 2(n + l), 

if p + k i s  a multiple of 2(n + l), 

and i f  neither o r  both a r e  true,  

equation (A3)  becomes 

( A 4  

where p = 1, 2, 3, . . . . Equation (A4) gives the  c r i t e r i a  f o r  buckling i f  
t he  determinant of t he  coefficients vanishes, t h a t  is, 

8 
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The determinant obtained by expanding equation (Ab) can be factored in to  minor 
determinants which correspond t o  the  buckling modes of general and panel i n s t a -  
b i l i t y .  These expressions are: 

(1) General i n s t a b i l i t y  f o r  a f i n i t e  number of rings: 

where, when i i s  odd 

P = (i - l ) ( n  + 1) + s 

and, when i i s  even 

p = i ( n  + 1) - s 

and the  minor determinant number s equals 1, 2, 3, . . . n. 

(2)  General i n s t a b i l i t y  f o r  an i n f i n i t e  number of rings which corresponds 
t o  orthotropic theory where t h e  ring s t i f fnes s  i s  added t o  t he  s t i f fnes s  of t he  
cylinder w a l l :  

M p + H = O  ( A 7 1  

where p = 1, 2, 3, . . . .  
( 3 )  Panel ins tab i l i ty :  

where p = j ( n  + 1) and j = 1, 2, 3,  . . . . 
The calculations required t o  solve the  i n s t a b i l i t y  expressions, equa- 

t i ons  (A6) ,  ( A 7 ) ,  and (A8) ,  f o r  the  c r i t i ca l - s t r e s s  coefficient kx were made 
f o r  a large range of orthotropic cylinder s t i f fnesses .  For the  calculations 
presented herein a typ ica l  set of cylinder s t i f fnesses  w a s  chosen. 
are given i n  the  f igures  and tab les  at  the  back of t he  paper. I n  order t o  cal- 
culate  t he  c r i t i ca l - s t ress  coefficient associated with each in s t ab i l i t y  mode, 
t h e  s t a b i l i t y  expressions a re  minimized with respect t o  t h e  parameter p, which 
i s  a f’unction of t h e  cylinder length and the  number of circumferential waves q 
i n  the  buckling mode. Theoretically q mus t  be zero or an integer number 
l a rge r  than one. However, negligible errors  are usually involved when the  sta- 
b i l i t y  expressions are minimized with respect t o  
t o  q, unless q i s  a s m a l l  number. The value of q w a s  found t o  be su f f i -  
c ien t ly  large so t h a t  negligible errors  resulted i n  the  calculations presented. 
The required numerical calculations and minimizations were quite lengthy, and, 
therefore, were performed on a high-speed d i g i t a l  computer. The exact c r i t i ca l -  
s t r e s s  coefficient w a s  not found, but increments of p were taken sui tably 
s m a l l  so t h a t  only slight er rors  resulted. 

These values 

p instead of with respect 

9 

I 



The results obtained by solving equation (A6) a r e  presented i n  the  n = 1 
through f i v e  blocks of tab les  I and 11, respec- through s i x  blocks and 

t ive ly .  
three rings i s  given i n  f igure 4. 
curve f o r  s = 1 there  are two min imums  resu l t ing  from a mode change. The 
curve f o r  s = 2 has a s ingle  minimum, while t he  curve f o r  s = 3 produces 
t h e  absolute m i n i m  and is, therefore, t he  value recorded i n  table I. The 
types of results shown i n  f igure 4 did not occur f o r  every case, but t he  range 
of f o r  t h e  calculations w a s  taken t o  cover a la rge  enough in te rva l  so t h a t  
t he  poss ib i l i t y  of double minimums w a s  checked. 

n = 1 
A representative example of t he  minimization of equation (A6)  f o r  

Examination of f igure 4 shows t h a t  f o r  the  

p 

The a x i a l  buckle shape associated with the  minimums of f igure 4 a re  of 
in te res t ,  and a r e  given i n  f igure 5 .  
as the  values of kx and p associated with the  buckle shape a re  given i n  
the  figure.  

The equation f o r  the  buckle shape as well 

Most of t he  solutions f o r t h e  buckling coeff ic ients  presented herein were 
made by use of 4th-order determinants. 
selected solutions t o  check t h e  convergence of t he  calculations.  The 10th-order 
determinant calculations did not change the  values of kx 
by more than 0.01 from t h a t  obtained by using the  4th-order determinant, so  t h a t  
t he  convergence obtained with a 4th-order determinant w a s  considered good. 

A 10th-order determinant w a s  used i n  

i n  tab les  I and '11 

The results obtained by solving equations (A7) and (A8)  are  given i n  
tab les  I and I1 under t h e  column headings of 
respectively. Representative examples of t he  minimization of equations (A7)  
and ( A 8 )  are given i n  f igures  6 and 7, respectively.  
a r e  depicted i n  the  upper right-hand corner of t he  f igures .  The r e su l t s  a re  
typ ica l  of those found i n  many shell-buckling problems. Equations (A7)  and ( A 8 )  
a r e  equivalent t o  t h e  equation derived by Ste in  and Mayers i n  reference 5 i f  
t h e  appropriate w a l l  s t i f fnesses  a re  employed i n  t h e  S te in  and Mayers equation 
when general. and panel i n s t a b i l i t y  modes of buckling a re  computed. 

n = w and panel ins tab i l i ty ,  

The mode shapes involved 
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-.... ....... 

5 -6 
5.2 
4.6 
7.3 
8.0 
8.1 
8.2 
8.2 

... .. . ... . . .. . - - . ~ 

1 
1 
1 
2 
2 
2 
2 
2 

27.52 
34.40 
39.59 
51.58 
54.35 

4.0 
4.8 
5 - 1  
4.7 
8.2 

27.53 
34.44 
39-72 
52.25 
65.84 

~ 

4.0 
4.8 
5.1 
4.6 
3.9 

- .  

I i 
1 
1 
1 
1 
2 
3 
4 
5 

of 
rings k X  P 

1 14.89 7.5 
2 21.35 8.2 
3 29.25 8.5 
4 38.75 8.6 
5 49.94 8.5 
6 62.91 8.3 

TABLE I.- BUCKLING PARAMrmERS FOR RING-STIFFEXED ORTHCYI'ROPIC CYLINDERS 

px = 4' = 0 

"Ypq = 3.0 
%/Ex = 0.376 

%/DX = 0.00132 
Dv/Dx = 0.0477 

z = 452.8 

n = l  n = 2  n = 3  
7 

k X  kX'  I s  P 5 

1 
3 

10 
30 
62.5 

100 
300 
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11.11 
13.28 
18.25 
20.54 
20.56 
20 9 57 
20.58 
20.58 

11.12 
13 -34 
18.52 
25 -58 
26.13 
26.26 
26.38 
26.42 

11.13 
13 35 
18.56 
27.47 
32.66 
33 - 39 
33.89 
34.04 

5 06 
5 -2  
4.6 
5 - 3  
7.1 
7.9 
8.3 
8.4 

Y 
n = 4  n = 6  

1 

n = 5  

kxlp I S 5 

1 
1 
1 
1 
2 
3 
4 
5 
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4.0 
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5.2 
8.1 
8.4 

11.13 I 5.6 1 
3 

10 
30 
62.5 
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300 
1000 

11.13 
13 35 
18.58 
27 5 1  
34 29 
39 9 14 
429 97 
43.37 

13-35 5.2 
18.58 1 4.6 

13.35 5.2 
18.58 I 4.6 

P 

1 2  



TABLE 11.- BUCKLING PARAMETERS FOR RING-STIFFEmED OETHOTROPIC CYLINDERS 
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B 

2.2 
2.1 
1.9 
1.4 

-9 
.6 

3.5 
3.4 
2.9 
2.2 
3.9 
3.9 

7.5 
7.1 
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13.1 
14.0 

22.1 

n = 2  3 

B 

2.2 
2.1 
1.9 
1.4 

-9 
.4 

3.5 
3.4 
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1 -7  

-9 
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7.0 
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11.9 
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14.0 

27-3 

4 n 

k X  

1 .876 
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4.444 
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4 * 763 
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u.19 
ll.21 
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u .76  
33.04 
33.05 

143 9 
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197 - 3 

n 

kx 

1.876 
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2.087 
2.811 
4.461 
6.161 

3 - 478 

4 - 776 
3 652 

8 - 785 
14.64 
18.97 

18 * 53 
21.80 
40.07 
47.77 

143.9 
183.9 
216.1 

Z 

30 
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Id 

104 

n 

kx 
Z 

30 
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Id 

104 

Z 

30 
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104 

- 
6 
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0.1 
1 
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.1 
1 

10 
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.1 
1 
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10 

Y 
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10 
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3 - 6 2  
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2.8ll 

6.161 

14.31 
16 97 

18.53 
a . 7 9  
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204 :l 
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11.4 
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13.1 
24.6 

B 6 
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1 
1 
1 
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2 
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1 
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2 
3 

1 
1 
1 
3 

1 
1 
3 

6 

1 
1 
1 
1 
1 
1 

1 
1 
1 
1 
1 
1 

1 
1 
1 
1 

1 
1 
1 

S 

1 
1 
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1 
1 
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3 

1 
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5 

1 
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5 
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1 
1 
1 
1 
2 
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1 
1 
1 
2 
2 

1 
1 
2 
2 

1 
1 
2 

- 
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1 
1 
1 
1 
1 
2 

1 
1 
1 
1 
2 
3 

1 
1 
1 
4 

1 
1 
1 

1.876 
1.901 
2.087 
2.811 
4.461 
6.161 

3.478 
3-652 
4.777 
8.788 

14.67 
19.00 

18.53 
u.80 
40.12 
57.85 

143 9 
183 * 9 
233 - 6 

2.2 
2.1 
1.9 
1.4 

.9 

.4 

3.5 
3.4 
2.9 
2.1 
1-7 

.9 

7.5 
7.0 
5.8 

12.4 

14.0 
13.1 
29.2 
__. 
~ 

1 
1 
1 
1 
1 
2 

1 
1 
1 
1 
2 
3 

1 
1 
1 
4 

1 
1 
4 - - 

Panel i n s t a b i l i t y  n = g  Number 
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2 
3 
4 
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2.2 
2.1 
1.9 
1.4 

-9 
.4 

3.5 
3.4 
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2.1 
1.7 

.9 

7.5 
7.0 
5 -8 

12.9 

13.1 
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14.0 

- 
P 

2 
3 
4 
5 

2 
3 
4 
5 

2 
3 
4 
5 
6 

- 

2 
3 
4 
5 
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- 

~ 

k X  

4.912 
9 - 790 

16.57 
25.37 

6.962 
12.08 
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27.77 

25.08 

4 2 . 9  
33 13 

53 12  
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198.6 
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k X  
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8.789 

14.68 
19.00 

18.53 
21.80 

87.16 

143 9 
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14.0 
13.1 
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.6 

.1 
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ll.l 

12.4 
11.9 
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Figure 1.- Theoretical critical-stress coefficient of a ring-stiffened orthotropic cylinder in axial compression. 
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Figure 2.- Theoretical cr i t ical-s t ress  coefficient of a ring-stiffened orthotropic cylinder i n  ax ia l  compression. 
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Figure 3 . -  Comparison of Shanley c r i t e r i o n  with theory of present paper. 
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Figure 4.- Minimization of general  i n s t a b i l i t y  equation f o r  t h ree  rings. Z = 452.8; y = 62.5. 



k x = 3 9 . 2 7 ,  P z 4 . 1 ,  s = l  
w = + 0.99386314 s inT-  TlX + 0.10168799 s i n ?  

- 0.04283381 s i n ?  + 0.00780309 sin- I5NX 

kx=61 .78, p=8.0, s = l  

w = + 0.16775675 s i n ?  t. 0.98544122 s i n ?  

L - 0.02745249 s in -  + 0.00307095 s i n I 5 T X  

k,=33.86, p=4.8,  s=2 

w = + 0.98884739 s i n F  + 0.14648043 s i n F  
I 4 l r X  - 0.02547759 s i n T  I O m x  + 0.00852019 s in-  

W 
k =32.66,  p=7.1 ,  s=3 

X 

w = - 0.74524561 s i n F  - 0.66633409 s i n F  

+ 0.02135362 sinL I h X  - 0.01232324 sin- I 3 n x  

Figure 5.- A x i a l - m o d e  shapes for min imum critical-stress coefficients of figure 4 
(y held constant). 

18 



b 

E 

7 

E 

E 
b 

4 

C 

2 3 

P x  = P; = 0 

D y / D x  = 0.00132 

D x y / D x  = 0.0477 

E y / G x y  = 3.0 

E y / E x  = 0.376 

\ 
\ 

- B u c k l i n g  modes 

- A 
p = 2 ( B u c k l e  s h a p e )  - 

- 

p= 3 - 

Figure 6.- Minimization of general  i n s t a b i l i t y  equation and corresponding buckling modes 
for an i n f i n i t e  number of r ings.  Z = 452.8; 7 = 62.5. 



D y / D x  = 0.00132 - 

7 0  ti- D x y / D x  = 0.0477 

E y / G x y  = 3.0 

E y / E x  = 0.376 

60 

50 

40 

30  

20  

10 

n=5 - 

~ 

n= 3 - 

n= I 

Buck I i ng modes 
n= I , p = 2  

V T  - 4 
- 

n=3,p=4 

n=5,p=6 - 
T - R i n g  

5 6 7 8 9 I O  

Figure 7.- Minimization of panel stability equation and corresponding buckling modes for 
one, three, and five rings. Z = 452.8. 

20 NASA-Langley, 1964 L-4134 



“The aeronautical and space activities of the United States shall be 
conducted so as to contribute . . . to  the expansion of hrtmaiz knowl- 
edge of phenomena in the atmosphere and space. The Administration 
shall provide for the widest practicable and appropriate dissemination 
of information concerning its activities and the results thereof .” 

-NATIONAL AERONAUTICS AND SPACE ACT OF 1958 

NASA SCIENTIFIC A N D  TECHNICAL PUBLICATIONS 

TECHNICAL REPORTS: 
important, complete, and a lasting contribution to existing knowledge. 

TECHNICAL NOTES: 
of importance as a contribution to existing knowledge. 

TECHNICAL MEMORANDUMS: Information receiving limited distri- 
bution because of preliminary data, security classification, or other reasons. 

CONTRACTOR REPORTS: Technical information generated in con- 
nection with a NASA contract or grant and released under NASA auspices. 

TECHNICAL TRANSLATIONS: Information published in a foreign 
language considered to merit NASA distribution in English. 

TECHNICAL REPRINTS: Information derived from NASA activities 
and initially published in the form of journal articles. 

SPECIAL PUBLICATIONS: Information derived from or of value to 
NASA activities but not necessarily reporting the results .of individual 
NASA-programmed scientific efforts. Publications include conference 
proceedings, monographs, data compilations, handbooks, sourcebooks, 
and special bibliographies. 

Scientific and technical information considered 

Information less broad in scope but nevertheless 

Details on the availability of these publications may be obtained from: 

SCIENTIFIC AND TECHNICAL INFORMATION DIVISION 

N AT I 0 N A L A E RO N AUT1 CS A N D SPACE A D M  I N I ST RAT1 0 N 

Washington, D.C. PO546 


